
# No walls Factory Floor IOT use cases task Force

Kreso Bilan







- A successful example from the UK
- Cambridge consultants (owned by Altran) and Ocado (online grocery shop)
  - "Transforming warehouse automation with another world-first in radio design"



- "Roaming the warehouse on a grid above millions of grocery items, Ocado's robots can assemble a typical 50-item order in five minutes."
- "The end result is a breakthrough in radio design – the most densely packed cellular network in the world. It's also scalable, with the capacity to handle up to 20 times the number of current movements."



| Real                  | V         |
|-----------------------|-----------|
| Lucrative             | ٧         |
| As simple as possible | V         |
| Not already realised  | Х         |
| In the space of:      | logistics |

| Indoor           | ٧ |
|------------------|---|
| Indoor & outdoor | X |
| Municipal        | Х |
| Nation wide      | X |

- Use cases should be:
  - Real no proof of concept. A real use case, which upon capturing requirements on private network, can be tested and deployed 1.
  - Lucrative the effort expanded must be justified by the price of private network 2.
  - 3. As simple as possible - more complicated use cases can be captured in an iterative process

#### 4.

Not already realised Note: Ocado use case is already realised, but SCF would benefit from:

- interference and throughput measurements
- understanding basic mitigation (possibly non-standardised) technologies
- In the space of (not exhaustive): agriculture 5.

  - consumer electronics
  - retail
  - logistics
  - manufacturing

## Requirements

#### • Venue

• Size and material:

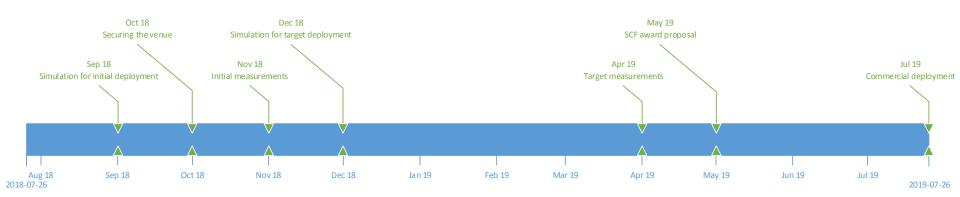
not too big: it would require too many radio nodes

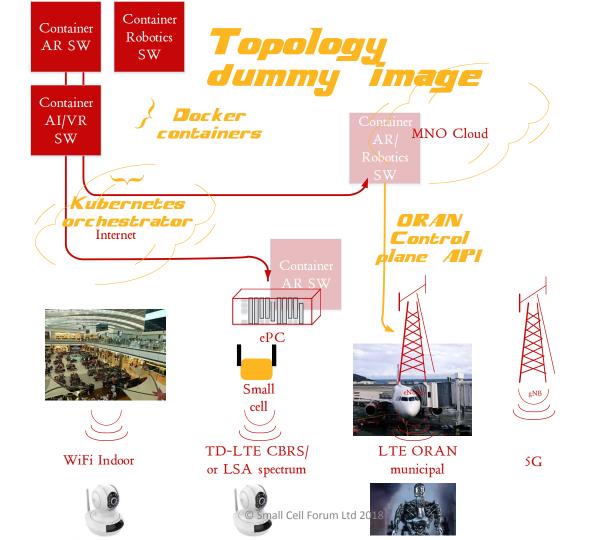
not too small: interference pattern must not be dominated completely by reflected signals

80m x 80m x 5m

microwave reflection by metal in construction should be significant

preferable there will be a small section in the venue where radio-environment can be controlled – to quickly gauge the radio equipment


- Meeting room
- Internet
- Power feeds
- Floorplan
- Technical support


## Requirements

### • Simulation

- Note: simulation can be just a paper exercise
- 1. Determine initial and target bandwidth per square foot from the floor to radio heads
- 2. Determine initial (static) and target velocities of UEs on the floor
- 3. Along the test programme determine the best steps how to achieve the target
- Test programme
  - Initial bandwidth and static UEs
    - · Bandwidth density, number of UEs, radio link latency, interference, jitter
  - Target bandwidth and UE velocities
    - Dependency of all variables on UE velocities, and UE pose and antenna pattern
  - Best steps to achieve the target
    - Changes in PHY (e.g. shortTTI, or FEC)
    - Changes in MAC (e.g. scheduler)







